Beijing LICA United Technology Limited

Novel Instruments Provide New Opportunities

Hotline: 010-51292601
Technical Technical
News Technical

Assessing a soil-removed semi-empirical model for estimating leaf chlorophyll content

Date: 2023-02-13
浏览次数: 24

Leaf chlorophyll content (LCC) is an important indicator of foliar nitrogen status and photosynthetic capacity. Accurate and timely mapping of LCC will benefit agronomists to guide fertilizer applications and ecologists to improve carbon flux estimation. In recent decades, remote sensing techniques have been widely used to estimate LCC with empirical and physical models.    Physical models are developed based on radiative transfer models that relate LCC to observed reflectance. The common practice of empirical modeling is to establish statistical relationships between LCC and vegetation indices (VIs) based on ground measurements. A recent study developed the LAI-insensitive chlorophyll index (LICI) and established a semi-empirical LICI-based LCC quantification model, which inherits both the robustness of physical models and the simplicity of empirical models. However, it is unclear whether such a simple model is as accurate and generic as physical models.

Based on this, a group of Chinese scientists used two experimental datasets: the first one from crop fields at Rugao (120°45′ E, 32°16′ N) and Xinghua (119°53′ E, 33°05′ N), Jiangsu Province, China (denoted as crop datasets) was to obtain the ground data (LCC, canopy reflectance spectra (ASD FieldSpec 4 spectrometer)), UAV canopy spectra data and Satellite data (for sampling LCC) and then to evaluate the LCC and LAI effects on LICI with a novel disentangling approach. The second from multiple vegetation types and locations in the USA (denoted as the multi-ecosystem dataset) was to evaluate the soil effects on the estimation of LCC due to its wide range of soil background. The objectives of this study were (1) to evaluate the effects of soil background on the LCC estimation using the LICI-based semiempirical model; (2) to propose a simple but efficient algorithm to remove soil effects on the LICI-based model; and (3) to compare the performance of a soil-removed LICI-based model with a MatrixVI-based physical model on LCC estimation in terms of their accuracy and generality.

Results:

Assessing a soil-removed semi-empirical model for estimating leaf chlorophyll content

Disentangling LAI and LCC effects on LICI based on ground measurements. (A) Average LICI in each percentile bin of LAI and LCC. (B) Relationships between LICI and LCC at eight bins of LAI. (C) Relationships between LICI and LAI at eight bins of LCC. (D) Boxplots of slopes for LICI~LCC and LICI~LAI at eight bins of LAI or LCC. (E-H) Similar to (A-D) but for MTCI.

Assessing a soil-removed semi-empirical model for estimating leaf chlorophyll content

Scatter plots of measured LCC and LCC (μg/cm2) estimated from contributed reflectance of vegetation (CRv) using (A-C) the LICI-based model, (D–F) the MTCI-based model, and (G-I) the MatrixVI-based model for crop datasets at three observation platforms: ground (the first column), UAV (the second column), and satellite (the third column). RMSEs for using both canopy reflectance (Rc) and CRv are presented in text for comparison.

Assessing a soil-removed semi-empirical model for estimating leaf chlorophyll content

Scatter plots of measured LCC and LCC (μg/cm2) estimated from contributed reflectance of vegetation (CRv) using (A-H) the LICI-based model, (I–P) the MTCI-based model, and (Q-X) the MatrixVI-based model for the multi-species dataset under different levels of equivalent wet soil fraction (fs: 0–0.1, 0.1–0.2, 0.2–0.3, 0.3–0.4, 0.4–0.5, 0.5–0.6, 0.6–0.7, and 0.7–0.8).


Conclusions: 

This study assessed the performance of the LICI-based semi-empirical model on estimating leaf chlorophyll content (LCC). By disentangling the LAI and LCC effects on LICI and MTCI based on both field measurements and model simulations, the authors revealed that LICI had higher sensitivity to LCC and remarkably lower sensitivity to LAI than MTCI. Moreover, this study proposed a 3SV algorithm to reduce the soil effects on the LICI-based model and this algorithm did not require any prior information about the soil background. Compared with the MTCI-based semi-empirical model and the MatrixVI-based physical model, the soil removed LICI-based semi-empirical model yielded the best estimation accuracy for the crop datasets (RMSE = 6.22–6.87 μg/cm2) and multi-ecosystem dataset (RMSE = 10.68 μg/cm2). Due to its practicability, generality, and accuracy, the LICI-based semi-empirical model is recommended for estimating LCC after removing the soil effects using the 3SV algorithm.


News / Related News More
2023 - 02 - 13
Leaf chlorophyll content (LCC) is an important indicator of foliar nitrogen status and photosynthetic capacity. Accurate and timely mapping of LCC will benefit agronomists to guide fertilizer applications and ecologists to improve carbon flux estimation. In recent decades, remote sensing techniques have been widely used to estimate LCC with empirical and physical models.    Physical...
2022 - 12 - 30
Cherry tomato (Solanum lycopersicum) is popular with consumers over the world due to its special flavor. Soluble solids content (SSC) and firmness are two key metrics for evaluating the product qualities. The existing measuring techniques relying upon chemistry reactions can derive the SSC value accurately. However, the destructive methods can not be applied in high volume measurements. Moreover, ...
2022 - 12 - 28
In the Arctic, the air temperature has increased more than twice the global average during the last few decades and may increase by 2-8°C before 2100. Wildfire frequency and expanse in the Arctic have increased in recent years. It can markedly disturb tundra ecosystems in different ways, including above-and belowground plant biomass destruction and alter soil properties through changes in the...
2022 - 12 - 06
Heavy metals in soil are harmful, and their migration and accumulation can seriously threaten ecological environmental security and human health. Arsenic (As) exhibits high neurotoxicity and teratogenicity. Much As is released into soil during human activities, including mining operations and industrial production activities. Determining the As concentration in soil quickly and accurately is impor...
Close window】【Print
Copyright ©2018-2023 LICA United Technology Limited
犀牛云提供企业云服务

LICA United Technology Limited

Address:The 5th.Building,No.18,Anningzhuang East Road,Haidian District, 100085, Beijing, China.

Tel:010-51292601
Fax:010-82899770-8014
E-mail:info@li-ca.com

 


 

 


 
  • Name:
  • *
  • 公司名称:
  • *
  • 地址:
  • *
  • 电话:
  • *
  • 传真:
  • *
  • E-mail:
  • *
  • 邮政编码:
  • *
  • 留言主题:
  • *
  • Details:
  • *
Feedback
Follow us
  • Wechat
  • Mobile Website
友情链接: