Scientific research assistance | Explore the mystery of soil carbon cycle LICA soil respiration monitoring system assists cutting-edge scientific research
PS-9000 portable soil carbon flux automatic measurement system
Soil respiration is an important part of terrestrial ecosystem carbon flux and has a decisive impact on global carbon cycle and climate change research. How to accurately measure greenhouse gas fluxes such as CO2, CH4, and N2O? How to achieve long-term, stable, and high-precision monitoring in extreme environments?
How to achieve long-term, stable, and high-precision monitoring in extreme environments?
With 16 years of technical experience, LICA has launched a series of soil respiration monitoring systems such as SF-3000/3500, PS-9000, PS-3000, and PS-3010. Sales exceeded 539 sets, 2,287 respiration chambers (as of the end of 2024), and are widely used by domestic and foreign research institutions and universities. Papers published cover journals such as nature communication, Journal of Environmental Management, and Science of the Total Environment!
SF-3500 Series Multi-Channel Soil Gas Flux Measurement System
PS-3010 Ultra-Portable CH4/CO2 Soil Respiration System
Research Trust - Some Literature
Zhang, R.; Qu, Z.; Yang, W.; Wang, L.; Zhang, D.; Liu, L.; Li, J.; Zhang, Z. Biochar Addition Enhances Annual Carbon Stocks and Ecosystem Carbon Sink Intensity in Saline Soils of the Hetao Irrigation District, Inner Mongolia. Plant Soil Environ. 2024, 70 (5), 263–275. https://doi.org/10.17221/121/2023-PSE.
Xu, Y.; Liao, B.; Jiang, Z.; Xin, K.; Xiong, Y.; Guan, W. Emission of Greenhouse Gases (CH4 and CO2) into the Atmosphere from Restored Mangrove Soil in South China. Journal of Coastal Research 2020, 37 (1). https://doi.org/10.2112/JCOASTRES-D-20-00054.1.
Zhang, R.; Qu, Z.; Yang, W.; Li, J.; Wang, L.; Liu, Q.; Zhang, D.; Qiao, T.; Zhao, Y. Evaluating Annual Soil Carbon Emissions under Biochar-Added Farmland Subjecting from Freeze-Thaw Cycle. Journal of Environmental Management 2024, 365, 121506. https://doi.org/10.1016/j.jenvman.2024.121506.
Zhang, R.; Qu, Z.; Liu, L.; Yang, W.; Wang, L.; Li, J.; Zhang, D. Soil Respiration and Organic Carbon Response to Biochar and Their Influencing Factors. Atmosphere 2022, 13 (12), 2038. https://doi.org/10.3390/atmos13122038.
Li, Y.; Wang, G.; Bing, H.; Wang, T.; Huang, K.; Song, C.; Chen, X.; Hu, Z.; Rui, P.; Song, https://doi.org/10.1016/j.agrformet.2021.108451.
Wang, P.; Ouyang, W.; Zhu, W.; Cui, X.; Wang, J.; Lin, C. Dissolved Organic Matter Movements from Forests Influence Downstream Soil CO2 Flux during Thawing. CATENA 2023, 233, 107497. https://doi.org/10.1016/j.catena.2023.107497.
Ouyang, W.; Wang, P.; Liu, S.; Hao, X.; Wu, Z.; Cui, X.; Jin, R.; Zhu, W.; Lin, C. Rainfall Stimulates Large Carbon Dioxide Emission during Growing Season in a Forest Wetland Catchment. Journal of Hydrology 2021, 602, 126892. https://doi.org/10.1016/j.jhydrol.2021.126892.
Shang, X.; Gao, T.; Yao, T.; Zhang, Y.; Zhao, Y.; Zhao, Y.; Luo, X.; Chen, R.; Kang, S. Riverine Carbon Dioxide Release in the Headwater Region of the Qilian Mountains, Northern China. Journal of Hydrology 2024, 632, 130832. https://doi.org/10.1016/j.jhydrol.2024.130832.
Guan, X.; Zhang, Y.; Niu, H.; Shi, P.; Cao, M.; Zu, P.; Xu, D.; Zhao, Q.; Wang, B.; Cui, L.; 5701–5712. https://doi.org/10.1002/ldr.5325.
Fan, L.; Cheng, J.; Xie, Y.; Xu, L.; Buttler, A.; Wu, Y.; Fan, H.; Wu, Y. Spatio-Temporal Patterns and Drivers of CH4 and CO2 Fluxes from Rivers and Lakes in Highly Urbanized Areas. Science of The Total Environment 2024, 918, 170689. https://doi.org/10.1016/j.scitotenv.2024.170689.
(Meng, Y.; Li, P.; Liu, https://doi.org/10.1016/j.scitotenv.2024.175685.
Wang, P.; Ouyang, W.; Zhu, W.; Geng, F.; Tulcan, R. https://doi.org/10.1016/j.agrformet.2023.109381.
Yan, Z.; Kang, E.; Zhang, K.; Hao, Y.; Wang, X.; Li, Y.; Li, M.; Wu, H.; Zhang, X.; Yan, L.; Zhang, W.; Responses of Microbial CAZymes Genes and the Net CO2 Exchange in Alpine Peatland Following 5 Years of Continuous Extreme Drought Events. ISME Communications 2022, 2 (1), 115. https://doi.org/10.1038/s43705-022-00200-w.
Yang, A.; Niu, Y.; Yu, X.; Wang, H.; An, M.; Che, R. Changes in Soil Oxidase Activity Induced by Microbial Life History Strategies Mediate the Soil Heterotrophic Respiration Response to Drought and Nitrogen Enrichment. Front. Microbiol. 2024, 15, 1375300. https://doi.org/10.3389/fmicb.2024.1375300.
Qi, S.; Yang, S.; Yu, W.; Hu, J.; Ma, C.; Jiang, Z.; Qiu, H.; Xu, Y. CO2 Fluxes Over Water-Saving Paddy F
ields with Different Straw Management Methods on the Basis of the Same Amount of Carbon Input. J Soil Sci Plant Nutr 2024, 24 (2), 2577–2588. https://doi.org/10.1007/s42729-024-01679-z.
Yu, X.; Hao, Y.; Yan, Z.; Li, Y.; Yang, A.; Niu, Y.; Liu, J.; Kang, E.; Zhang, K.; Yan, L.; Zhuang, W.; Zhang, X.; Kang, X. Effects of Gradient Warming on Carbon and Water Fluxes in Zoige Plateau Peatland. Water 2025, 17 (2), 241. https://doi.org/10.3390/w17020241.
Kang, E.; Li, Y.; Zhang, X.; Yan, Z.; Zhang, W.; Zhang, K.; Yan, L.; Wu, H.; Li, M.; Niu, Y.; Yang, A.; Wang, J.; Kang, X. Extreme Drought Decreases Soil Heterotrophic Respiration but Not Methane Flux by Modifying the Abundance of Soil Microbial Functional Groups in Alpine Peatland. CATENA 2022, 212, 106043. https://doi.org/10.1016/j.catena.2022.106043.
Yan, Z.; Wang, J.; Liu, Y.; You, Z.; Zhang, J.; Guo, F.; Gao, H.; Li, L.; Wan, S. Maize/Peanut Intercropping Reduces Carbon Footprint Size and Improves Net Ecosystem Economic Benefits in the Huang-Huai-Hai Region: A Four-Year Study. Agronomy 2023, 13 (5), 1343. https://doi.org/10.3390/agronomy13051343.
Yan, Z.; Kang, E.; Zhang, K.; Li, Y.; Hao, Y.; Wu, H.; Li, M.; Zhang, X.; Wang, J.; Yan, L.; Kang, X. Plant and Soil Enzyme Activities Regulate CO2 Efflux in Alpine Peatlands After 5 Years of Simulated Extreme Drought. Front. Plant Sci. 2021, 12, 756956. https://doi.org/10.3389/fpls.2021.756956.
Wang, X.; Li, Y.; Hao, Y.; Kang, E.; Han, J.; Zhang, X.; Li, M.; Zhang, K.; Yan, L.; Yang, A.; Niu, Y.; Kang, X.; Yan, Z. Soil Temperature and Fungal Diversity Jointly Modulate Soil Heterotrophic Respiration under Short-Term Warming in the Zoige Alpine Peatland. Journal of Environmental Management 2024, 370, 122778. https://doi.org/10.1016/j.jenvman.2024.122778.
Chen, Y.; Qin, W.; Zhang, Q.; Wang, X.; Feng, J.; Han, M.; Hou, Y.; Zhao, H.; Zhang, Z.; He, J.-S.; Torn, M. S.; Zhu, B. Whole-Soil Warming Leads to Substantial Soil Carbon Emission in an Alpine Grassland. Nat Commun 2024, 15 (1), 4489. https://doi.org/10.1038/s41467-024-48736-w.
Chen, Y.; Qin, W.; Zhang, Q.; Wang, X.; Feng, J.; Han, M.; Hou, Y.; Zhao, H.; Zhang, Z.; He, J.-S.; Torn, M. S.; Zhu, B. Whole-Soil Warming Leads to Substantial Soil Carbon Emission in an Alpine Grassland. Nat Commun 2024, 15 (1), 4489. https://doi.org/10.1038/s41467-024-48736-w.
Chen, Y., Qin, W., Zhang, Q. et al. Whole-soil warming leads to substantial soil carbon emission in an alpine grassland. Nat Commun 15, 4489 (2024). https://doi.org/10.1038/s41467-024-48736-w
Ma, L.; Zhong, M.; Zhu, Y.; Yang, H.; Johnson, D. A.; Rong, Y. Annual Methane Budgets of Sheep Grazing Systems Were Regulated by Grazing Intensities in the Temperate Continental Steppe: A Two-Year Case Study. Atmospheric Environment 2018, 174, 66–75. https://doi.org/10.1016/j.atmosenv.2017.11.024.
Li, S.; Ma, Q.; Zhou, C.; Yu, W.; Shangguan, Z. Applying Biochar under Topsoil Facilitates Soil Carbon Sequestration: A Case Study in a Dryland Agricultural System on the Loess Plateau. Geoderma 2021, 403, 115186. https://doi.org/10.1016/j.geoderma.2021.115186.
Dong, Q.; Liu, Y.; He, P.; Du, W. Belowground Biomass Changed the Regulatory Factors of Soil N2O Funder N and Water Additions in a Temperate Steppe of Inner Mongolia. J Soil Sci Plant Nutr 2024, 24 (1), 606–617. https://doi.org/10.1007/s42729-023-01569-w.
Jing-jing, Z.; Jin-song, Z.; Ping, M.; Ning, Z.; Jian-xia, L. Change of Soil CH4 Fluxes of Robinia Pseudoacacia Stand During Non-Growing Season and the Impact Factors.
Yang, L.; Zhang, Q.; Jin, H.; Ma, Z.; Jin, X.; Marchenko, S. S.; He, R.; Spektor, V. V.; Chang, X. CO2 and CH4 Fluxes from Forest Soil in the Northern Da Xing’anling Mountains in Northeast China during the Freezing and Thawing Periods of near-Surface Soil in 2018–2019. Scandinavian Journal of Forest Research 2023, 38 (4), 275–285. https://doi.org/10.1080/02827581.2023.2208874.
Su, C.; Kang, R.; Huang, W.; Wang, A.; Li, X.; Huang, K.; Zhou, Q.; Fang, Y. CO2 Removal with Enhanced Wollastonite Weathering in Acidic and Calcareous Soils. Soil Ecol. Lett. 2025, 7 (1), 240273. https://doi.org/10.1007/s42832-024-0273-z.
Xu, X.; Wu, H.; Yue, J.; Tang, S.; Cheng, W. Effects of Snow Cover on Carbon Dioxide Emissions and Their δ13C Values of Temperate Forest Soils with and without Litter. Forests 2023, 14 (7), 1384. https://doi.org/10.3390/f14071384.
Pan, Z.; Wei, Z.; Ma, L.; Rong, Y. Effects of Various Stocking Rates on Grassland Soil Respiration during the Non-Growing Season. Acta Ecologica Sinica 2016, 36 (6), 411–416. https://doi.org/10.1016/j.chnaes.2016.09.004.
Qu, S.; Xu-Ri; Yu, J.; Borjigidai, A. Extensive Atmospheric Methane Consumption by Alpine Forests on Tibetan Plateau. Agricultural and Forest Meteorology 2023, 339, 109589. https://doi.org/10.1016/j.agrformet.2023.109589.
Li, X.; Quan, Z.; Huang, K.; Kang, R.; Su, C.; Liu, D.; Ma, J.; Chen, X.; Fang, Y. High Soil Nitrous Oxide Emissions from a Greenhouse Vegetable Production System in Shouguang, Northern China.
Atmospheric Environment 2024, 319, 120264. https://doi.org/10.1016/j.atmosenv.2023.120264.
Rong, Y.; Ma, L.; Johnson, D. A. Methane Uptake by Four Land-Use Types in the Agro-Pastoral Region of Northern China. Atmospheric Environment 2015, 116, 12–21. https://doi.org/10.1016/j.atmosenv.2015.06.003.
Shu, Y.; Chuying, G.; Jiayin, H.; Leiming, Z.; Guanhua, D.; Xuefa, W.; Guirui, Y. Modelling Soil Greenhouse Gas Fluxes from a Broad-Leaved Korean Pine Forest in Changbai Mountain: Forest-DNDC Model Validation.
Ren, S.; Liu, Y.; He, P.; Zhao, Y.; Wang, C. Nitrogen and Water Additions Affect N2O Dynamics in Temperate Steppe by Regulating Soil Matrix and Microbial Abundance. Agriculture 2025, 15 (3), 283. https://doi.org/10.3390/agriculture15030283.
Pan, Z.; Johnson, D. A.; Wei, Z.; Ma, L.; Rong, Y. Non-Growing Season Soil CO2 Efflux Patterns in Five Land-Use Types in Northern China. Atmospheric Environment 2016, 144, 160–167. https://doi.org/10.1016/j.atmosenv.2016.08.085.
Yang, L.; Zhang, Q.; Ma, Z.; Jin, H.; Chang, X.; Marchenko, S. S.; Spektor, V. V. Seasonal Variations in Temperature Sensitivity of Soil Respiration in a Larch Forest in the Northern Daxing’an Mountains in Northeast China. J. For. Res. 2022, 33 (3), 1061–1070. https://doi.org/10.1007/s11676-021-01346-4.
Zhang, J.; He, P.; Liu, Y.; Du, W.; Jing, H.; Nie, C. Soil Properties and Microbial Abundance Explain Variations in N2O Fluxes from Temperate Steppe Soil Treated with Nitrogen and Water in Inner Mongolia, China. Applied Soil Ecology 2021, 165, 103984. https://doi.org/10.1016/j.apsoil.2021.103984.
Rong, Y.; Ma, L.; Johnson, D. A.; Yuan, F. Soil Respiration Patterns for Four Major Land-Use Types of the Agro-Pastoral Region of Northern China. Agriculture, Ecosystems & Environment 2015, 213, 142–150. https://doi.org/10.1016/j.agee.2015.08.002.
Wang, Q.; Shi, J.; Wang, J.; Pan, J.; Ma, F.; Zhang, R.; Tian, D.; Liu, N.; Zhou, R.; Gao, Z.; Liu, M.; Shi, R.; Niu, S. Threshold Response of Arbuscular Mycorrhizal Mycelial Respiration to a Nitrogen Addition Gradient in an Alpine Grassland. Functional Ecology 2025, 1365-2435.70033. https://doi.org/10.1111/1365-2435.70033.
Zhang, Y.; Naafs, B. D. A.; Huang, X.; Song, Q.; Xue, J.; Wang, R.; Zhao, M.; Evershed, R. P.; Pancost, R. D.; Xie, S. Variations in Wetland Hydrology Drive Rapid Changes in the Microbial Community, Carbon Metabolic Activity, and Greenhouse Gas Fluxes. Geochimica et Cosmochimica Acta 2022, 317, 269–285. https://doi.org/10.1016/j.gca.2021.11.014.
Jia, Z.; Li, P.; Wu, Y.; Yang, S.; Wang, C.; Wang, B.; Yang, L.; Wang, X.; Li, J.; Peng, Z.; Guo, L.; Liu, W.; Liu, L. Deepened Snow Cover Alters Biotic and Abiotic Controls on Nitrogen Loss during Non-Growing Season in Temperate Grasslands. Biol Fertil Soils 2021, 57 (2), 165–177. https://doi.org/10.1007/s00374-020-01514-4.
Wang, J.; Quan, Q.; Chen, W.; Tian, D.; Ciais, P.; Crowther, T. W.; Mack, M. C.; Poulter, B.; Tian, H.; Luo, Y.; Wen, X.; Yu, G.; Niu, S. Increased CO2 Emissions Surpass Reductions of Non-CO2 Emissions More under Higher Experimental Warming in an Alpine Meadow. Science of The Total Environment 2021, 769, 144559. https://doi.org/10.1016/j.scitotenv.2020.144559.
Xue-Yuan Z.; Cui-Ping G.; Jing-Lei T.; Yi Z.; Lei T.; Guo-Dong H.; Hai-Yan R.; Key Laboratory of Grassland Resources of the Ministry of Education, Inner Mongolia Key Laboratory of Grassland Management and Utilization, College of Grassland, Resources and Environment, Inner Mongolia Agricultural University, Hohhot 010011, China. Responses of soil CH4 and CO2 flux to warming and nitrogen addition during freeze-thaw cycles in a desert steppe of Nei Mongol, China. Chinese Journal of Plant Ecology 2024, 48 (10), 1291–1301. https://doi.org/10.17521/cjpe.2024.0040.
......

LICA Excellent Scientific Research Achievement Support Fund
Award Fund Name
LICA Excellent Scientific Research Achievement Support Fund
Purpose and Significance
LICA United Technology Limited is a professional company focusing on ecological and environmental scientific research. We represent, develop, produce and sell high-quality ecological and environmental instruments, and provide customers with excellent after-sales service. In order to better support the scientific research and innovation work of scientific researchers, and at the same time enhance the brand image of the company in scientific research services and social feedback, we established a three-year public welfare first phase award fund in 2021, which has achieved good public welfare results and contributed a small amount to scientific research services. In order to better serve and give back to the society, it is decided to establish a second phase award fund.
Award period
Three years (2025-2027)
Award method and award conditions
1. Use the instruments independently developed and produced by LICA United Technology Limited, and clearly indicate the manufacturer, name and model of the instrument in the article (see Article 5 for detailed requirements);
2. The article must be published within the award period (2025-2027);
3. Article requirements: limited to Chinese core journals and SCI journals;
4. This award is for the first author of the article, and the first author shall apply for this award. If there are multiple co-first authors, please coordinate the award attribution and distribution matters by yourself;
5. Award standards:
1) Domestic core journals 1,000 yuan/article;
2) SCI journals: impact factor below 10 (not including 10), award 2,000 yuan/article; impact factor 10 and above, award 5,000 yuan/article;
3) Chinese core journal catalog and SCI impact factor, the data published in the previous year shall prevail;
4) The article shall prevail upon publication;
Award product model and company name
(I) This fund is applicable to the following products independently developed and produced by LICA:
1. LI-2100 Automatic Vacuum Extraction System/ LI-2100 Automatic Cryogenic Vacuum Distillation Water Extraction System
2. LI-2200 Automatic Vacuum Extraction System/ LI-2200 Automatic Cryogenic Vacuum Distillation Water Extraction System
3. SF-3500/SF-9000/PS-9600/PS-3000 Series/PS-9000/PS-2000 Series Soil Greenhouse Gas Flux Monitoring System/ Soil Greenhouse Gas Flux Monitoring System
4. IRIS Airborne Hyperspectral Lidar Combined System/ LR1601 Airborne Hyperspectral Lidar Combined System/ 300L2 Airborne Hyperspectral System 300L2 Aieborne Hyperspectral System/ 300TC Airborne Hyperspectral System 300TC Airborne Hyperspectral Compact System
5.IRIS Plant Phenotype Measurement System/HPPA Hyperspectral Plant Phenotype System
6.IRIS Solar Induced Chlorophyll Fluorescence Monitoring System/iSIF Solar Induced Fluorescence Monitoring System
7. HS1000/HS2000 Hyperspectral Sensor/Hyperspectral Sensor
(II) Company Name:
Beijing LICA United Technology Limited.
Bonus Payment Procedure
The first author of the article submits an application, and the bonus will be issued within one month after it is reviewed and approved by the Award Fund Review Group.
Other Matters
1. The winners must bear the corresponding income tax;
2. The right to interpret this policy belongs to the company.